Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

Classical Tests of Cosmology

Toni Sagristà Sellés

Universitat de Barcelona Departament d'Astronomia i Meteorologia

8 June 2011

Outline

1

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance

2 Classical Tests

Introduction

- Luminosity Distance
- Angular Diameter distance

Number Counts

3 Conclusions

Outline

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

1 Introduction

Classical Tests

- Luminosity Distance
- Angular Diameter distance

Number Counts

3 Conclusions

Introduction

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

What are classical tests of cosmology?

Techniques to determine values of cosmological parameters

- Discover global geometry and dynamics of Universe
- Only cosmology before precision cosmology
- Most tests require some standard object
- Basically, seek value of H₀, Ω₀ and q₀

Introduction Summing up

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

Classical cosmology

- Identify Standard candles, Standard rods and Standard populations at different z
- Use their properties to gauge geometry and dynamics

Outline

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests

Luminosity Distance Angular Diameter distance

Introduction

2 Classical Tests

- Luminosity Distance
- Angular Diameter distance

Number Counts

3 Conclusions

Luminosity Distance I

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

Inverse-square law to determine distance through flux

$$M - m = -5(log_{10}D_L - 1)$$
$$D_L = 10^{\frac{m-M}{5}+1}[pc]$$

But usually

$$D_L = \left(\frac{L}{4\pi l}\right)^{1/2}$$

- Luminoisty distance ≠ real distance
- Inverse-square law does not hold due to expansion, geometry

Luminosity Distance II

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

Expansion and redshift effect

$$D_L = a_0 r_0 (1 + z)$$
$$D_{phy} = a_0 r_0$$

For small distances, $D_L = D_{phy}$

Luminosity Distance III

Classical Tests

Figure: Luminosity distance versus redshift for various flat models. Red dots are recent HST observations

イロト 不得 とうほう イヨン

3

Luminosity Distance IV

Classical Tests

Toni Sagristà Sellés

Standard candles

- Pulsar stars Cepheids and RR Lyrae, period-luminosity relation known
- Red clump stars Absolute magnitude depends on age and metallicity
 - SNIa Δm_{15} index, luminosity decrease 15 days after maximum
 - PNLF Old stars evolved into red giant phase, use OIII (doubly ionized oxygen) line to find them. They seem to all have the same luminosity

X-ray bursts Mass related to burst luminosity

Luminosity Distance V

galaxies with their luminosity

Angular Diameter Distance I

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

Measures how large objects appear to be

$$D_A = \frac{d}{\sin\theta} \simeq \frac{d}{\theta}$$
$$D_A = \frac{a_0 r_0}{1+z} \left(= \frac{D_L}{(1+z)^2} \right)$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

 $z \to \infty$, $D_A \to 0$ - Distant objects seem larger!

Angular Diameter Distance II

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

- The further objects are from us, the older they are, so their comoving size is larger
- Inflection point position depends on q₀ and Ω

Figure: Angular diameter distance vs redshift. The blue line corresponds to $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$, and the red line corresponds to $\Omega_m = 1$, $\Omega_{\Lambda} = 0$

Angular Diameter Distance III

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

Standard rods

Cluster elliptical galaxies The fundamental plane relation combined with a correction for luminosity evolution can be used

Spiral galaxies Their angular diameter can be determined through observation

BAO Baryonic acoustic oscillations, based on size of acoustic waves produced in baryonic matter clustering zones in the primitive universe

Number Counts I

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance

Number Counts

Conclusions

- Focus on cumulative count of objects instead of their physical properties
- We know cumulative number, we may know integration distance
- Number of objects per sterad up to a distance r₀

$$N(r_0) = n(t_0)a_0^3 \int_0^{r_0} \frac{r^2 dr}{\sqrt{1 - kr^2}}$$

Number Counts II

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance

Conclusions

Problems

 Statistical method, uses great number of objects, more prone to errors

- Limiting observable magnitudes may bias sample
- We lack info on actual redshift distribution of observed galaxies

Number Counts III

Figure: Number counts in models and observations by HST and others

イロト イポト イヨト イヨ

Outline

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance

Conclusions

Introduction

Classical Tests

- Luminosity Distance
- Angular Diameter distance
- Number Counts

3 Conclusions

Conclusions

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance Number Counts

Conclusions

- Evolution problem: Standard callibrators work at short distances
- Standard callibrators affected by the evolution of the Universe
- Bias problem: All observations affected by biases (due to sensitivity, angular resolution, faint luminosity...)
- Classical tests key to development of cosmology
- From 2000 on, precision cosmology
- Gravitational lensing can be used to accurately describe geometry of space

References I

Classical Tests

Toni Sagristà Sellés

Introduction

Classical Tests Luminosity Distance Angular Diameter distance

Conclusions

T. Roy Choudhury and T. Padmanabhan.

Cosmological parameters from supernova observations: A critical comparison of three data sets. Astronomy and Astrophysics, 429(807), 2005.

L.I. Gurvits, K.I. Kellermann, and S. Frey.

The 'angular size - redshift' relation for compact radio structures in quasars and radio galaxies. Astronomy and Astrophysics, 342:378–388, 1999.

J. A. S. Lima J. V. Cunha and N. Pires.

Deflationary $\lambda(t)$ cosmology: Observational expressions. Astronomy and Astrophysics, 390:809–815, 2002.

Hannu Karttunen.

Fundamental Astronomy. Springer, 2006 (5th Edition).

Andrew Liddle.

An Introduction to Modern Cosmology. Wiley, 2003.

Francesco Lucchin Peter Coles.

Cosmology - The Origin and Evolution of Cosmic Structure. Wiley, 2002.

Allan R. Sandage.

The ability of the 200-inch telescope to discriminate between selected world models. Astrophysics Journal, 133:355, 1961.

References II